人教版三年级上册数学知识点
第一单元时分秒
1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是( 1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
8、公式。(每两个相邻的时间单位之间的进率是60)
1时=60分 1分=60秒
半时=30分 60分=1时
60秒=1分 30分=半时
第二、四单元万以内的加法和减法(一)(二)
1、最大的几位数和最小的几位数
最大的一位数是9, 最小的一位数是0.
最大的二位数是99, 最小的二位数是10
最大的三位数是999, 最小的三位数是100
最大的四位数是9999, 最小的四位数是1000
最大的五位数是99999, 最小的五位数是10000
最大的三位数比最小的四位数小1。
2、读数和写数 (读数时写汉字 写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。
最大的三位数是位999,最小的三位数是100,最大的四位数是9999,最小的四位数是1000。最大的三位数比最小的四位数小1。
5、被减数是三位数的连续退位减法的运算步骤:
① 列竖式时相同数位一定要对齐;
② 减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。
6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
7、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
特别注意:中间是0的退位减法,例如:309-189;1000-428等
8、⑴加法公式:加数+另一个加数=和
加法的验算:
①交换两个加数的位置再算一遍。
另一个加数+加数=和
②和-另一个加数=加数
⑵减法公式:被减数-减数=差
减法的验算:
①差+减数=被减数
②减数+差=被减数
③被减数-差=减数
特别注意:验算时“验算”别忘了写!!!
第三单元测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)
2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
5、长度单位的关系式有:( 每两个相邻的长度单位之间的进率是10 )
① 进率是10:
1米=10分米, 1分米=10厘米,
1厘米=10毫米, 10分米=1米,
10厘米=1分米, 10毫米=1厘米,
② 进率是100:
1米=100厘米, 1分米=100毫米,
100厘米=1米, 100毫米=1分米
③ 进率是1000:
1千米=1000米, 1公里==1000米,
1000米=1千米, 1000米 =1公里
6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用( 克 )做单位;称一般物品的质量,常用(千克 )做单位;计量较重的或大宗物品的质量,通常用( 吨 )做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;
把千克换算成吨,是在数字的末尾去掉3个0。
7、相邻两个质量单位进率是1000。
1吨=1000千克 1千克=1000克
1000千克= 1吨 1000克=1千克
第五单元倍的认识
1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。
2、求一个数是另一个数的几倍用除法: 一个数÷另一个数=倍数
3、求一个数的几倍是多少用乘法; 这个数×倍数=这个数的几倍
第六单元多位数乘一位数
1、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。
2、一个因数中间有0的乘法:
① 0和任何数相乘都得0;
② 因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。
③一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0.
3、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程 每节车厢的人数×车厢的数量=全车的人数
路程÷时间=速度
路程÷速度=时间
5、(关于“大约)应用题:
问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下”,条件中无论有没有大约都是求近似数,用估算。(估算时要用 ≈)
例:387×5≈
把387看作390(个位是7,四舍五入,7大于5所以进1,看作390)再算390×5=1950.
所以:387×5≈1950
第七单元 长方形和正方形
1、有4条直的边和4个角的封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式:
长方形的周长=(长+宽)×2
变式:①长方形的长=周长÷2-宽
②长方形的宽=周长÷2-长
正方形的周长=边长×4
变式: 正方形的边长=周长÷4
第八单元 分数的初步认识
1、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
分子表示:其中的几份
分母表示:平均分成几份
2、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。
几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
3、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
4,比较大小的方法:
①当分子相同时,分母越小分数越大,分母越大分数越小。
② 当分母相同时,分子大的分数就大,分子小的分数就小。
5、分数加减法:
①相同分母的分数加、减法的计算方法:分母不变,分子相加、减。
② 1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。(1可以看作所有分子分母相同的分数)
6,求一个数是另一个数的几分之几是多少的计算方法:
例:把12个圆的3/4有( )个圆;
分析:先找整体12;再找分母4,表示平均分成4份;求出12÷4=3,表示每一份有3个;最后找分子3,表示其中的3份,所以:3×3=9;所以把12个圆的3/4有9个圆。
北师大三年级上册数学知识点
第一单元 混合运算
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
关于“0”的运算
1、“0”不能做除数;
字母表示:a÷0错误
2、一个数加上0还得原数;
字母表示:a+0= a
3、一个数减去0还得原数;
字母表示:a-0= a
4、被减数等于减数,差是0;
字母表示:a-a =0
5、一个数和0相乘,仍得0;
字母表示:a×0=0
6、0除以任何非0的数,还得0;
字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商;5÷0得不到商.
第二单元 观察物体
1.四边形特征
正方形
四条边都相等,两组对边分别平行
四个角都是直角
长方形
对边相等,两组对边分别平行
四个角都是直角
平行四边形
对边相等,两组对边分别平行
两组对角分别相等
梯形
只有一组对边平行
等腰梯形同底上的两个角相等
2.生活中的简单物体观察总结:同一个物体从不同的角度看会有不同的形状。
3.总结:同一立体图形从不同角度观察会有不同的形状。
第三单元 加与减
1、在计算脱式计算连加时,按从左到右的顺序,先把前两个数相加,再加第三个数,也可以把三个数直接用一个竖式计算,相同数位对齐,从个位加起,哪一位上的数字满几十就要向前一位进几,不要认为满十进一。
2、在计算三个三位数连加时,如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。
3.用脱式计算连减时,按从左到右的顺序,先把前两个数相减,再减第三个数。也可以先把后两个数相加,写在小括号里面,再用第一个数减去这两个数的和。
4.如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。
5.三位数加减混合运算的顺序:没有小括号的按从左到右的顺序依次计算,有小括号的先算小括号里面的,再算小括号外面的。
6.根据里程表提出问题,一般先把里程表转化成线段图来观察,再列式计算。
7.解决此类问题时,一定要从多个角度画图去理解三者之间的位置关系。位置变化,列式也随之变化。
8.当天行驶的里程数=当天里程表的读数-前一天里程表的读数
9.解答算式谜时,要通过观察推理找到从哪一位先计算,然后一步一步推算出答案。
第四单元 乘与除
1、整十数乘一位数,根据表内乘法,先用整十数0前面的数与一位数相乘,再在积的末尾添上一个0。
2、整百数乘一位数,根据表内乘法,先用整百数0前面的数与一位数相乘,再在积的末尾添上两个0。
3、整十、整百数乘一位数,先根据表内乘法用整十、整百数0前面的数与一位数相乘,再在积的末尾添上相应个数的0。
4、在口算整百、整千数乘一位数时,先看清楚整百、整千数的末尾有几个0,就在积的末尾添上几个0。要注意一位数与0前面的数相乘时得到的0不能丢。
5.两位数乘一位数(不进位)的口算方法:先把前两位数看作几个十和几个一相加的和,再用一位数分别与它们相乘,最后把所得的两个积相加。
6、整十数除以一位数的口算方法:
(1)、先看一位数与什么数相乘能得到这个整十数(也就是被除数),结果就是那个数。
(2)、按表内除法计算:先不看被除数末尾的0,按照表内除法算出商,再将被除数末尾的0填写在商的末尾。
7、在除法算式里,被除数不变(被除数不为0)。除数越大,商越小,除数越小,商越大;除数不变,被除数越大,商越大,被除数越小,商越小。
8、口算两位数除以一位数,先把被除数看成一个整十数和一个一位数,然后分别除以除数,再把所得的两个商相加。
9、(两个连续自然数之和+1)÷2=较大自然数,(两个连续自然数之和-1)÷2=较小自然数, (两数之和+两数之差)÷2=较大数,(两数之和-两数之差)÷2=较小数。
第五单元 周长
1、围成一个图形所有边的长度总和或者说绕一个图形边线一周的总和就是这个图形的周长。
2、不规则物体或图形的测量方法:绳子测量法。
3、规则物体或图形的测量方法:(1)绳测法,(2)直尺测量法。
4、求长方形的周长必须满足两个条件:已知长和宽的长度。
5、长方形周长的计算方法:
(1)长方形的周长=长+宽+长+宽
(2)长方形的周长=长×2+宽×2
(3)长方形的周长=(长+宽)×2
(4)已知长方形的周长和宽,求长;“长=(周长-宽×2)÷2”或“长=周长÷2-宽”
(5)已知长方形的周长和长,求宽;“宽=(周长-长×2)÷2”或“宽=周长÷2-长”
6、正方形周长的计算方法:
(1)可以把4条边长加起来;
(2)用一条边长乘以4,即正方形的周长=边长×4
7、靠墙围成的长方形有两种情况:
(1)长边靠墙,
(2)宽边靠墙。
8、围成的两种长方形,宽边靠墙比长边靠墙所需的围栏多。
第六单元 乘法
1、两、三位数乘一位数(不进位)的笔算方法:从个位算起,用一位数依次去乘多位数每一位的数,与哪一位上的数相乘,就在那一位的下面写积。
2、在列竖式计算两位数乘一位数时,一定要用一位数依次去乘两位数中每个数位上的数。
3、两、三位数乘一位数(进位)的笔算乘法,列竖式计算时,先将一位数与多位数对齐,从个位算起,哪一位上相乘满几十就向前一位进几。
4、两位数乘一位数(进位)的笔算,要把进位的数写到正确的位置上,不要写在积中。
5、两、三位数乘一位数(连续进位)的笔算方法:从个位算起,用一位数依次去乘两位数每一位上的数,哪一位上乘得的积满几十,就向前一位进几。计算时每一步都不要忘记加上进位数。
6、笔算乘法时,哪一位上满十就向前一位进1,向哪一位进1,就在那一位加1。
7、0和任何数相乘都等于0。
8、一个乘数末尾有0的乘法的计算方法:
(1)先用这个乘数0前面的数乘另一个乘数;
(2)再看这个乘数末尾有几个0 ,就在积的末尾添上几个0.
9、在计算乘数中间有0的乘法时,从个位算起,用一个数依次去乘多位数每一位上的数,哪一位上的乘积是0,要在那一位上写0占位,如果有进上来的数必须加上。
10、结论:
(1)因数的末尾有0,乘积中一定有0。
(2)因数的中间有0,乘积中不一定有0。
11、连乘的估算方法:尽可能将其中两个数的乘积估成整十,整百数,再与第三个数相乘。
12、连乘的运算顺序:按从左到右的顺序依次计算。
13、三个数连乘时,可以先把前两个数相乘,在乘第三个数;也可以先把后两个数相乘,再乘第一个数;还可以把任意两个数交换位置后再相乘。
第七单元 年 月 日
1、一年有12个月。
2、1、3、5、7、8、10、12月每月有31天,是大月;4.6.9.11月每月有30天,是小月;2月有28天或29天,2月既不是大月,也不是小月。
3、一个月只有28天时,这个月有四个星期一至星期日;一个月有29天时,这个月中星期一至星期日的某一个是5天;一个月有30天时,这个月中星期一至星期日的某2个是5天;一个月有31天时,这个
4、2月29日是个特殊的日子,只有4年才出现。
5、每四年中有一年的二月份有29天,其他年份的二月份都只有28天。
6、认识平年和闰年:
(1)公里年份是4的倍数的是闰年,不是4的倍数的是平年,公立年份是整百年的,是必须是400的倍数的才是闰年。
(2)判断一个整百年份是不是闰年,要看这个年份数是不是400的倍数,如果是整数倍就是闰年,否者就是平年.
(3)2月份是28天的是平年,2月份是29天的是闰年,平年一年有365天,闰年一年有366天。
(4)平年一年有52个星期零1天,闰年一年有52个星期零2天。
365÷7=52(个)......1(天)
366÷7=52(个)......2(天)
7、推算几周年的的时间问题,可以用终止年份直接减去起始年份,所得的差即为所求。
8、24时记时法:在一日(天)里,钟表上的时针正好走2圈,共计24时。所以经常采用从0到24时的计时法,通常叫作24时计时法。
9、普通计时法与24时记时法的表示时刻的换算:从凌晨0:00到中午12:00与普通计时法相同;中午12:00以后,普通计时法与24时记时法的整点时刻相差12,普通计时法去掉限制词后加12就是24时计时法,24时计时法减12后就是普通计时法,
10、计算从一个时刻到另一个时刻所经过的时间,可以根据钟表推算,也可以用终止时刻减去起始时刻。
11、计算中午12时的经过时间,要么把时间都换算成24时计时法来计算,要么先算中午12时以前有多长时间,再加上下午的一段时间。
12、普通计时法在表述时要加上限制词上午、下午或者晚上等,这样才能将时间准确的表达出来。
13、同一段距离,测量方法和测量工具不同,在测量的结果相同的情况下,选简便的方法比较合适。
14、地面上一定范围内的直线距离可以直接用直尺来测量。
15、解决搭配问题也可以用乘法计算,也能得到有多少种不同的搭配方法。
16、数路线问题实际上也属于搭配问题,在确定行走路线时,一定不要重复和遗漏。
17、日历中的数有很多规律,如横向左边的数比右边的数少1;纵向上面的数比下面少7等。
第八单元 认识小数
1、像3.15,0.50,1.06,6.66,...这样的数,都是小数。“.”叫作小数点。
2、小数由整数部分、小数点、和小数部分组成。
3、一个小数的小数部分有几位数,它就是几位小数。
4、读小数时,整数部分按整数的读法读,中间的小数点读作点,小数部分依次读出每一数位上的数。
5、写小数时,要先写整数部分,按照整数的写法来写,然后在个位的右下角点上小数点,最后写小数部分,依次写出各个数位上的数。
6、把以元为单位的小数改写成以元、角、分的数的方法:小数的整数部分是几,就改写成几元;小数点后的第一位是几,就改写成几角;小数点后的第二位是几,就改写成几分。若那一位上是0,那一位就省略不写。
7、把带有元、角、分的数改写成一元为单位的小数时,元与小数的整数部分相对应,角与小数点后的第一位数相对应,分与小数点后的第二位数相对应。
8、比较小数大小的方法:先比较整数部分,整数部分大的这个小数就大;如果整数部分相同,就比较小数点后的第一位,小数点后的第一位上的数大的这个小数就大;如果相同就比较小数点后的第二位,以此类推。
9、比较三个或三个以上小数的大小和比较两个小数大小的方法相同,先比较整数部分,整数部分相同,再依次比较小数部分。
10、小数加法的计算方法:小数相加,先把小数点对齐(也就是把相同数位对齐),再按照整数加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。
11、小数减法的计算方法:小数相减,先把小数点对齐(也就是把相同数位对齐),再按照整数减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。
12、在计算小数加法时,与整数加法一样,哪一位上的数相加满十就向前一位进1,千万不要忘记满十进一,也不要忘记下一位进上来的一。
13、把带有米、分米、厘米的数改写成以“米”为单位的小数时,米与小数的整数部分相对应,分米与小数点后的第一位数相对应,以此类推。
14、如果米、分米、厘米中某一个单位上一个数也没有,在改写成以“米”为单位的小数时,就在那个单位所对应的数位上写0。
苏教版三年级上册数学知识点
第一单元 两、三位数乘一位数
1.整十整百数乘一位数的口算:
口算整十数、整百数乘一位数不看乘数末尾的0,借助表内乘法计算
2.整十整百数乘一位数的估算:
先找到两位数、三位数的近似数,再估算。
3.求一个数是另一个数的几倍:
求一个数是另一个数的几倍,”也就是“求一个数里面有几个几。用除法解决。
4.求一个数的几倍是多少:
求一个数的几倍是多少的问题,就是求几个几是多少,用乘法计算
5.两、三位数乘一位数(不进位):
计算两位数乘一位数我们可以把两位数分成几十和几,先分别乘以一位数,再把两次乘得的数合起来就是所求的积。
6.两、三位数乘一位数(进一位):
①归纳:用一位数乘被乘数个位上的数,积满几十,就向十位进几;用一位数乘被乘数十位上的数,积满几百,就向百位进几。
②注意:告诉学生,为了防止忘记,进位数可写小一些记在横线上。
7. 两、三位数乘一位数(连续进位):
①用一位数乘两位数上个位上的数,积满几十向十位进几;
②用一位数乘两位数上十位上的数,积满几百向百位进几;
③用一位数乘两位数上百位上的数,积满几千向千位进几;
④不要漏加进位数字。
8.三位数(中间有0)乘一位数的笔算:
从个位乘起,用一位数依次去乘三位数中每一位上的数(包括0),当个位乘的的积向十位进位时,将进上来的数写在十位上,如果个位上没有进位,那么十位上就用0占位。
9. 三位数(末尾有0)乘一位数的笔算:
乘数末尾有0的,一位数要与它的末尾0前面的数对齐,先乘0前面的数,再看乘数末尾有几个0,就在积的末尾添上几个0。
10. 解决问题
一个来回是走了这段路的两次。
对折绳子和对折纸:
对折次数 | 1次 | 2次 | 3次 | 4次 |
平均分的份数 | 2份 | 4份 | 8份 | 16份 |
规律:每对折一次平均分的份数是前一次的两倍。
判断:两个数相乘的积一定比这两个数相加的和大(×)
第二单元 千克和克
1.千克和克的认识:
①称一般物品有多重,常用千克作单位。千克可以用字母“kg”表示。千克又叫作公斤。
②2包盐重1千克。4本数学书约重1千克。书包约重2千克。
③生活中常见的几种秤:电子秤、体重秤、大型台秤、小型电子秤、天平、盘秤、杆秤、小型台秤。
④称比较轻的物品,常用克作单位。克可以用字母“g”表示。
⑤1枚2分硬币大约重1克。
⑥1千克=1000克 1000克=1千克
⑦水+空杯=总重,总重-水=空杯,总重-空杯=水。
⑧一定要看清单位,是以克为单位还是以千克为单位,单位不一样一定要换算单位。
⑨知识补充:
长度单位:毫米,厘米,分米,米;
重量单位:千克和克。填写单位时一定要看清是填长度还是重量。
第三单元 长方形和正方形
1.认识长方形和正方形:
①长方形有四条边,对边相等;有四个角,都是直角。
②正方形的四条边都相等,四个角都是直角。
③通常把长方形长边的长叫作长,短边的长叫作宽;正方形每条边的长叫作边长。
④正方形是长宽相等的长方形;正方形是一种特殊的长方形。
2.认识周长:
围成图形的每条边的总长就是这个图形的周长
3.长方形和正方形的周长计算:
长方形的周长=长+宽+长+宽=(长+宽)×2 =长×2+宽×2
长方形的长=周长÷2-宽 ;长方形的宽=周长÷2-长
正方形的周长=边长×4 ;正方形的边长=周长÷4
篱笆最长=长×2+宽 ;篱笆最短=宽×2+长
4.解决问题
①剪(折)一个最大的正方形,正方形的边长是原来长方形的宽。
②画图题:画一个周长是多少的长方形,先让周长÷2,得到长加宽的和,然后再将和分成,确定长和宽。
③两个长方形的周长相等,说明它们长与宽的和相等,但长和宽不一定分别相等。
④正方形的边长扩大几倍,周长也扩大几倍。
⑤把一个图形剪成两个图形之后,这两个图形的周长之和肯定大于原来图形的周长。
⑥把两个相同的长方形拼成一个大的图形,这个图形的周长小于原来两个长方形周长的和。
第四单元 两、三位数除以一位数
1.整十整百的数除以一位数的口算:
口算整十数除以一位数,可以把被除数看成几个十,再想一想这几个十除以除数等于多少个十;也可以用被除数十位上的数除以除数,商是几,最后算得的结果就是几个十。
2.两三位数除以一位数(首尾能整除):
笔算两位数除以一位数要从十位除起,除得的商要写在十位上,然后再接着往下除,商要写在被除数上;
笔算三位数除以一位数要从百位除起,除得的商要写在百位上,然后再接着往下除,商要写在被除数上;
3.除法的验算:
没有余数的除法验算,用商和除数相乘,验算有余数的除法,用商和除数相乘再加上余数。
4.两三位数除以一位数(首尾不能整除):
当首位不能整除时,余下来的数要和后一位上的数合起来组成新数再除
5.三位数除以一位数(商是两位数):
三位数除以一位数,百位不够商1,就把百位上的数和十位上的数合起来除以除数,得数写在商的十位上,然后再把余下的数和个位上的数合起来继续除,得数写在商的个位上,每次所得的余数要比除数小。
6.商中间末尾有0的除法:
①0除以或乘任何不是0的数都等于0;
②商中间有0的除法的计算方法(没有余数的):在除法笔算过程中,遇到被除数中间哪一位上的数是0且前一位没有余数时,这一位上的商就是0,要在这一位上商0;
③商末尾有0的除法的计算方法(没有余数的):在一位数除三位数的笔算过程中,除到被除数的十位正好除尽,个位又是0,就不必再除下去,只要在商的个位上写0就可以了。
④商中间有0的除法的计算方法(除的过程中有余数):一位数除三位数,在求出商百位上的数以后,除到被除数的十位不够商一,要商0占位,余下的数和个位上的数合起来再继续除。
⑤商末尾有0的除法的计算方法(除的过程中有余数的):(1)除到被除数的十位正好除得尽,个位上又是0,就不必再除下去,只要你在个位商0就可以。(2)除到被除数的十位正好除得尽,而被除数个位上的数又比除数小,就不必再除,只要在商的个位写0,被除数个位上的数落下作为余数。
7.解决问题
① 比赛中,单打是2人一组,双打是4人一组。
② 一个数除以2再除以4相当于除以了8。(2×4=8)
③ 遇到师生坐船,师生乘车,和给商品装箱等问题,除得的余数也要考虑,最后别忘记让商再加1才是最后需要的数量。如果题中说明了有几位老师,要把老师的数量加到总数中。
第五单元 解决问题的策略
1.从条件想起
①要弄清题中每个条件的含义,看清要求的问题;
②可以从条件开始想起,确定先算什么,再算什么;
③可以列式计算,也可以列表找出答案;
2.间隔排列
一一间隔两种物体排成一行,两端相同,两端物体个数-中间物体个数=1,两端不同,两种物体的个数相等。
3.解决问题
① 每一天都比前一天多8个,到第三天是共增加了2个8,第五天是增加了4个8。
② 不太明白谁多谁少或者不清楚相互关系时,要画线段图。
第六单元 平移、旋转和轴对称
1.平移:
沿着同一方向、路线是直直的,这样的运动是平移
2.旋转:
绕着一个固定的中心转,这样的运动是旋转。
3.轴对称图形:
对折后能完全重合的图形,是轴对称图形。
第七单元 分数的初步认识(一)
1.认识几分之一:
①把一个物体或一个图形平均分成若干份,这样的一份是几分之一
②我们把一个蛋糕平均分成2份,这样的1份,就是1/2。1/2是一个分数,分数中间的短横线叫分数线,下面表示平均分成2份的这个2叫分母,上面这个表示这样一份的1叫分子。
2.认识几分之几:
①把一个物体或一个图形平均分成若干份,这样的几份是几分之几。
②分数大小比较:分母相同比分子,分子大,分数大,分子小,分数小;分子相同比分母,分母小,分数大,分母大,分数小。
3.简单分数加、减法:
同分母分数相加减,分母不变,分子相加减。
4.解决问题:
必须是平均分,才能用分数去表示其中的一部分。(这里一般出判断题)
©2011-2023 多品小学教育
工信部备案号:蜀ICP备16015826号