知识点:
1、乘法分配律:两个数的和(或差)与一个数相乘,可以把两个加数(或被减数、减数)分别与这个数相乘,在把两个积相加(或相减),结果不变。用字母表示数:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c
补充知识点:
2、式子的特点:式子的原算符号一般是×、+(-)、×的形式;在两个乘法式子中,有一个相同的因数;另为两个不同的因数之和(或之差)基本上是能凑成整十、整百、整千的数。
3、 102×88、99×15这类题的特点:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成整十、整百、整千与一个数的和(或差),再应用乘法分配律可以使运算简便。
练习题:
38×62+38×38 75×14—70×14
101×38 12×98
55×99+55 55×99
12×29+12 58×199+58
42×79+42 52×89
69×101—69 55×21—55
125×(80+8) 125×(80×8)
125×32×25 99×99+99
38×7+31×14 25×46+50×27
79×25+22×25—25
知识点:
1、乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变。用字母表示是:(a×b)×c=a×(b×c).
2、使用时机:当几个数相乘时,如果其中两个数相乘得整十、整百、整千的数就可以应用乘法交换律和乘法结合律。乘法结合律可以改变乘法运算中的顺序。数字如;25和4、50和2、125和8、50和4、500和2等。
错例:
● (125×19)×8
=125×8+19×8
此题应该可以用交换律和结合律把125与8相乘,再把它们的积与19相乘,正确解法为:
(125×19)×8
=(125×8)×19
=1000×19
=19000
但有的孩子学了乘法分配律,与乘法结合律混淆在一起,把括号内的125与19分别与括号外的8相乘,则变成了这样:
(125×19)×8
=125×8+19×8
=1000+152
=1152
● 125×88=125×80×8
这个也是把结合律和分配律混淆的结果,88应该拆成80+8,但它却变成了80×8,并且这道题其实也可以拆成结合律:
125×88
=125×8×11
=1000×11
=11000
©2011-2023 多品小学教育
工信部备案号:蜀ICP备16015826号